最简单的:
1A*2450 *****这个其实也就等于2450A
(1A1B)*1200
(1A1B)*1200-1B
*****这个其实也就等于(1A1B)*1199+1A
(60A8B12A)*38+48A
(1A1B)*1200+(1A1C)*1200
复杂点的:
[(1A1B)*36+1A4B+(1A1B)*5+2A4B4A4B3A6B3A4B4A4B2A1B+(1A1B)*4+1A3B+(1A1B)*9]*18+(1A1B)*26
[(1A1C)*36+1A4D+(1A1E)*5+2A4B4A4F3A6B3A4B4A4B2A1B+(11A10B)*4+1A3B+(1A1B)*9]*11+[(3A1C)*36+5A4D+(1G1E)*5+2A4B2A1B+(11A10B)*4+1A3B+(1A1B)*9]*12
[(3A1C)*36+5A4D+(1G1E)*5+2A4B2A1B+(11A10B)*4+1A3B+(1A1B)*9]*12+2A4B4A4B3A6B3A+(11A10B)*4+1A3B+(1A1B)*9]*12
{[(1A1C)*36+1A4D+(1A1E)*5+2A4B4A4F3A6B3A4B4A4B2A1B+(11A10B)*4+1A3B+(1A1B)*9]*7+(11A10B)*4+1A3B+(1A1B)*9}*3+3B3C
{[(1A1C)*36+1A4D+(11A10B)*4+1A3B+(1A1B)*9]*7+(11A10B)*4+1A3B+(1A1B)*9}*3+[3B3C+(11A10B)*4]
最复杂的就是上面两个复杂的结合到一起外面再套一层括号再循环一次,不过最复杂的那种很少见,可以不考虑,能解决3重括号就能满足绝大部分需要,
总体上来说,就是1-20种不等的纱线按顺序排2000-6000根,把其中有规律的部分写成循环了,需求是获得这一组纱线中各种纱线的根数,进而求出每种纱线在这一组中所占的比例,
[此贴子已经被作者于2020/1/13 8:30:11编辑过]